Flipping to Robustly Delete a Vertex in a Delaunay Tetrahedralization

نویسندگان

  • Hugo Ledoux
  • Christopher M. Gold
  • George Baciu
چکیده

We discuss the deletion of a single vertex in a Delaunay tetrahedralization (DT). While some theoretical solutions exist for this problem, the many degeneracies in three dimensions make them impossible to be implemented without the use of extra mechanisms. In this paper, we present an algorithm that uses a sequence of bistellar flips to delete a vertex in a DT, and we present two different mechanisms to ensure its robustness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delaunay Tetrahedralizations: Honor Degenerated Cases

The definition of a Delaunay tetrahedralization (DT) of a set S of points is well known: a DT is a tetrahedralization of S in which every simplex (tetrahedron, triangle, or edge) is Delaunay. A simplex is Delaunay if all of its vertices can be connected by a circumsphere that encloses no other vertex. An important remark made in virtually all papers on this topic is that “although any number of...

متن کامل

The Strange Complexity of Constrained Delaunay Triangulation

The problem of determining whether a polyhedron has a constrained Delaunay tetrahedralization is NP-complete. However, if no five vertices of the polyhedron lie on a common sphere, the problem has a polynomial-time solution. Constrained Delaunay tetrahedralization has the unusual status (for a small-dimensional problem) of being NP-hard only for degenerate inputs.

متن کامل

Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations

We present a method to decompose an arbitrary 3D piecewise linear complex (PLC) into a constrained Delaunay tetrahedralization (CDT). It successfully resolves the problem of non-existence of a CDT by updating the input PLC into another PLC which is topologically and geometrically equivalent to the original one and does have a CDT. Based on a strong CDT existence condition, the redefinition is d...

متن کامل

Sweep Algorithms for Constructing Higher-Dimensional Constrained Delaunay Triangulations

I discuss algorithms for constructing constrained Delaunay triangulations (CDTs) in dimensions higher than two. If the CDT of a set of vertices and constraining simplices exists, it can be constructed in O(nvns) time, where nv is the number of input vertices and ns is the number of output d-simplices. The CDT of a starshaped polytope can be constructed in O(ns log nv) time, yielding an efficien...

متن کامل

An Approach for Delaunay Tetrahedralization of Bodies with Curved Boundaries

Problem of tetrahedral meshing of three-dimensional domains whose boundaries are curved surfaces is wide open. Traditional approach consists in an approximation of curved boundaries by piecewise linear boundaries before mesh generation. As the result mesh quality may deteriorate. This paper presents a technique for Delaunay-based tetrahedralization in which a set of constrained facets is formed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005